Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Genet Med ; 25(2): 100332, 2023 02.
Article En | MEDLINE | ID: mdl-36520152

PURPOSE: This study aimed to establish the genetic cause of a novel autosomal recessive neurodevelopmental disorder characterized by global developmental delay, movement disorder, and metabolic abnormalities. METHODS: We performed a detailed clinical characterization of 4 unrelated individuals from consanguineous families with a neurodevelopmental disorder. We used exome sequencing or targeted-exome sequencing, cosegregation, in silico protein modeling, and functional analyses of variants in HEK293 cells and Drosophila melanogaster, as well as in proband-derived fibroblast cells. RESULTS: In the 4 individuals, we identified 3 novel homozygous variants in oxoglutarate dehydrogenase (OGDH) (NM_002541.3), which encodes a subunit of the tricarboxylic acid cycle enzyme α-ketoglutarate dehydrogenase. In silico homology modeling predicts that c.566C>T:p.(Pro189Leu) and c.890C>A:p.(Ser297Tyr) variants interfere with the structure and function of OGDH. Fibroblasts from individual 1 showed that the p.(Ser297Tyr) variant led to a higher degradation rate of the OGDH protein. OGDH protein with p.(Pro189Leu) or p.(Ser297Tyr) variants in HEK293 cells showed significantly lower levels than the wild-type protein. Furthermore, we showed that expression of Drosophila Ogdh (dOgdh) carrying variants homologous to p.(Pro189Leu) or p.(Ser297Tyr), failed to rescue developmental lethality caused by loss of dOgdh. SpliceAI, a variant splice predictor, predicted that the c.935G>A:p.(Arg312Lys)/p.(Phe264_Arg312del) variant impacts splicing, which was confirmed through a mini-gene assay in HEK293 cells. CONCLUSION: We established that biallelic variants in OGDH cause a neurodevelopmental disorder with metabolic and movement abnormalities.


Movement Disorders , Neurodevelopmental Disorders , Animals , Humans , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , HEK293 Cells , Ketoglutarate Dehydrogenase Complex/genetics , Ketoglutarate Dehydrogenase Complex/metabolism , Neurodevelopmental Disorders/genetics
2.
STAR Protoc ; 3(3): 101465, 2022 09 16.
Article En | MEDLINE | ID: mdl-35719725

In this protocol, we take CRISPR/Cas9 and Gal4/UAS approaches to achieve tissue-specific knockout in parallel with rescue of the knockout by cDNA expression in Drosophila. We demonstrate that guide RNAs targeting the exon-intron junction of target genes cleave the genomic locus of the genes, but not UAS-cDNA transgenes, in a tissue where Gal4 drives Cas9 expression. The efficiency of this approach enables the determination of pathogenicity of disease-associated variants in human genes in a tissue-specific manner in Drosophila. For complete details on the use and execution of this protocol, please refer to Yap et al. (2021).


CRISPR-Cas Systems , Drosophila melanogaster , Animals , CRISPR-Cas Systems/genetics , DNA, Complementary/genetics , Drosophila/genetics , Drosophila melanogaster/genetics , Exons/genetics , Introns
...